Expansion of (x+y+z)^2
Trending Questions
If a+b+c = 10 and a2+b2+c2=38; find ab+bc+ca
Find a2+b2+c2; if a+b+c=9 and ab+bc+ca=24
Find a+ b + c; if a2+b2+c2=83 and ab+bc+ca=71
If (a+b+c=25) and (ab+bc+ca=59)
Find the value of
(a2+b2+c2)
118
500
507
527
Evaluate If a + b + c = 15 and a2+b2+c2 = 125 , find ab + bc + ca
100
75
81
50
If a + b + c = 11 and a2+b2+c2=81, find ; ab+bc+ca.
Find the square of .
Without actually calculating the cubes, find the value of (−12)3+(7)3+(5)3.
-1260
0
-36
-1620
If a + b + c = 9 and ab + bc + ca = 15, find : a^2 + b^2 + c^2.
then (a+b+c) is :
- 9
- 18
- 24
- 12
Expand :
(i) (2a+b)2
(ii) (a−2b)2
(iii) (a+12a)2
(iv) (2a−1a)2
(v) (a+b−c)2
(vi) (a−b+c)2
(vii) (3x+13x)2
(viii) (2x−12x)2
Simplify and express each of the following in exponential form:
(vii) 20×30×40
Expand :
(i) (3x−4y+5z)2
(ii) (2a−5b−4c)2
(iii) (5x+3y)3
(iv) (6a−7b)3
If a+b+c=11 and ab+bc+ac=32
find
a2+b2+c2
57
89
45
67
(a + b) (2a – 3b + c) – (2a – 3b) c = 2a2 – 2b2 – ab + 4bc – 2ac.
True
False
and find its value for a=1, b=0 and c=2.
- 1
- 0
- -1
- 2
- 11
- 16
- 13
- 36
If (a+b+c) is positive and a2+b2+c2=83 and ab+bc+ca=71
then a+b+c=
Expand the following identity.
(2x+1)3
(a + b) (2a – 3b + c) – (2a – 3b) c = 2a2 – 2b2 – ab + 4bc – 2ac.
True
False
Find a2+b2+c2; if a+b+c=9 and ab+bc+ca=24
- no real value of b and c
- 0<c<b√2
- |c|>|b|√2
- |c|<|b|√2
Which of the following equations are correct?
(i) (a+b+c)2=a2+b2+c2−2(ab+bc+ca)
(ii) (a+b)3=a3+b3+3ab(a−b)
(iii) (a−b)3=a3−b3−3ab(a+b)
(iv) a2−b2=(a+b)(a−b)
(i) and (iv)
(ii), (iii) and (iv)
(iv) only
(iv) and (iii)
If a + b + c = 0 ; then
(a^2 + b^2 + c^2) ÷ (ab +bc + ca) =
-2
1
2
0
If a + b + c = 10 and a^2 + b^2 + c^2 = 38
then ab + bc + ca =
31
62
0
100
Expansion of is ___________
Evaluate (a+2b+3c)2
a2+4b2+9c2+4ab+12bc+6ac
a2+4b2+9c2+8ab+12bc+6ac
a2+4b2+9c2+4ab+12bc+12ac
a2+4b2+9c3+4ab+12bc+6ac
- a2−b2−c2
- 2ab+2bc+2ac
- 2ab+2bc−2ac−a2−b2−c2
- 2bc−2ac−b2−c2